/** * Vector addition: A = A + B. * * This sample is a very basic sample that implements element by element * vector addition. It is the same as the sample illustrating Chapter 2 * of the programming guide with some additions like error checking. */ #include // For the CUDA runtime routines (prefixed with "cuda_") #include /** * CUDA Kernel Device code * * Computes the vector addition of A and B into A. The 2 vectors have the same * number of elements numElements. */ __global__ void vectorAdd(float *A, float *B, int numElements) { int i = blockDim.x * blockIdx.x + threadIdx.x; if (i < numElements) { A [i] = A[i] + B[i]; } } /** * Host main routine */ int main() { // Error code to check return values for CUDA calls cudaError_t err = cudaSuccess; // Print the vector length to be used, and compute its size int numElements = 8; size_t size = numElements * sizeof(float); printf("[Vector addition of %d elements]\n", numElements); // Allocate the host input vector A float *h_A = (float *)malloc(size); // Allocate the host input vector B float *h_B = (float *)malloc(size); // Verify that allocations succeeded if (h_A == NULL || h_B == NULL)// || h_C == NULL) { fprintf(stderr, "Failed to allocate host vectors!\n"); exit(EXIT_FAILURE); } // Initialize the host input vectors for (int i = 0; i < numElements; ++i) { h_A[i] = i; h_B[i] = 2.0; printf("a[%d] = %f\n",i,h_A[i]); } // Allocate the device input vector A float *d_A = NULL; err = cudaMalloc((void **)&d_A, size); if (err != cudaSuccess) { fprintf(stderr, "Failed to allocate device vector A (error code %s)!\n", cudaGetErrorString(err)); exit(EXIT_FAILURE); } // Allocate the device input vector B float *d_B = NULL; err = cudaMalloc((void **)&d_B, size); if (err != cudaSuccess) { fprintf(stderr, "Failed to allocate device vector B (error code %s)!\n", cudaGetErrorString(err)); exit(EXIT_FAILURE); } // Copy the host input vectors A and B in host memory to the device input vectors in // device memory printf("Copy input data from the host memory to the CUDA device\n"); err = cudaMemcpy(d_A, h_A, size, cudaMemcpyHostToDevice); if (err != cudaSuccess) { fprintf(stderr, "Failed to copy vector A from host to device (error code %s)!\n", cudaGetErrorString(err)); exit(EXIT_FAILURE); } err = cudaMemcpy(d_B, h_B, size, cudaMemcpyHostToDevice); if (err != cudaSuccess) { fprintf(stderr, "Failed to copy vector B from host to device (error code %s)!\n", cudaGetErrorString(err)); exit(EXIT_FAILURE); } // Launch the Vector Add CUDA Kernel int threadsPerBlock = 16; int blocksPerGrid =(numElements + threadsPerBlock - 1) / threadsPerBlock; printf("CUDA kernel launch with %d blocks of %d threads\n", blocksPerGrid, threadsPerBlock); vectorAdd<<>>(d_A, d_B, numElements); err = cudaGetLastError(); if (err != cudaSuccess) { fprintf(stderr, "Failed to launch vectorAdd kernel (error code %s)!\n", cudaGetErrorString(err)); exit(EXIT_FAILURE); } // Copy the device result vector in device memory to the host result vector // in host memory. printf("Copy output data from the CUDA device to the host memory\n"); err = cudaMemcpy(h_A, d_A, size, cudaMemcpyDeviceToHost); if (err != cudaSuccess) { fprintf(stderr, "Failed to copy vector C from device to host (error code %s)!\n", cudaGetErrorString(err)); exit(EXIT_FAILURE); } // Verify that the result vector is correct for (int i = 0; i < numElements; ++i) { printf("a[%d] = %f\n",i,h_A[i]); } // Free device global memory err = cudaFree(d_A); if (err != cudaSuccess) { fprintf(stderr, "Failed to free device vector A (error code %s)!\n", cudaGetErrorString(err)); exit(EXIT_FAILURE); } err = cudaFree(d_B); if (err != cudaSuccess) { fprintf(stderr, "Failed to free device vector B (error code %s)!\n", cudaGetErrorString(err)); exit(EXIT_FAILURE); } // Free host memory free(h_A); free(h_B); // Reset the device and exit err = cudaDeviceReset(); if (err != cudaSuccess) { fprintf(stderr, "Failed to deinitialize the device! error=%s\n", cudaGetErrorString(err)); exit(EXIT_FAILURE); } printf("Done\n"); return 0; }